
On the physical significance of Bucci 
relaxation times obtained from thermal 
sampling 

N.  G.  M c C r u m  
Department of Engineering Science, University, of Oxford, Parks Road, Oxford, UK 
( R e c e i v e d  7 D e c e m b e r  1 981 ) 

It is shown that the Bucci relaxation time, zB, is not in general a true measure of a physical relaxation time 
in a mechanical or dielectric thermal sampling (TS) experiment. A method is proposed by which zB may 
be corrected to obtain an effective relaxation time, ~'8½, which is the relaxation time computed from the 
Bucci equation at 50% relaxation: re~ when correctly calculated, depends only on the temperature of 
observation. The calculation is based on two assumptions: (i) that the shape of the distribution of 
relaxation times (slope of the ramp) has been assessed within the experimental error; (ii) that the shift 
factor is the same for all relaxation times within the narrow packet activated in the TS experiment. It is 
shown by experiment that the plot of log ~'e versus T -1 for a viscoelastic polymer (isotactic 
polypropylene in the fl-region) is curved: the curvature is explained theoretically. The plot of log ze½ 
versus T -1 yields a straight line, in agreement with the Arrhenius equation. The early TS experiments, 
which have been interpreted to favour the compensation rule, should be re-analysed since the published 
analysis is made by Arrhenius plots using uncorrected values of T B. The high temperature TS experiments 
on polystyrene and polypropylene (stated to be anomalous by Lacabanne and co-workers in yielding 
curved log 7e versus T -~ plots) will be found, when analysed by the methods described in this paper, to 
conform to the Arrhenius equation. 
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viscoelastic polymer 

INTRODUCTION 

In this paper we examine the use of the equation of Bucci 
and Fieschi 1~2 for determining the relaxation time in 
thermal sampling experiments. The method of thermal 
sampling is of great potential and is one of the two 
methods most likely to resolve the dominant outstanding 
problem in polymer viscoelasticity. This is the question of 
whether or not the compensation rule 3'4 applies to the 
activated processes within a given relaxation. There is 
increasing evidence that it does. The time honoured and 
theoretically convenient assumption of thermo- 
viscoelasticity, that for all processes within a given 
relaxation the activation energy AH is constant 5, is 
therefore under attack. 

The attack comes from two quarters. First, from a 
recent determination of AH within a given relaxation 
using the extremely precise method of double T-jump 6. 
Second, from the method of thermal sampling, (TS). 

In TS a viscoelastic strain (or, in the alternative 
experiment, a dielectric polarization) is frozen into the 
specimen by a rapid quench to a low temperature T o. The 
release of the frozen-in strain (or polarization) is then 
observed as the specimen is heated in a controlled 
manner: the most convenient heating programme is T 
linear in time t, 

T =  To + Pt. (1) 

The different variants on this experiment have been 
lucidly reviewed by van Turnhout 7. 

The most commonly used TS experiment is the 
temperature window variant. In a temperature window 
experiment a constant stress is applied at T,, for a time t,, 
commonly of order 1000s. The temperature is then 
lowered by AT to Ta, Figure 1: A T  is the temperature 
window and is usually about 10K. At T a the stress is 
removed and the specimen permitted to recover partially 
for a time td, usually equal to t,. The specimen is then 
quenched (by 50K or so) to T O so that viscoelastic strain is 
frozen-in at T o. A linear heating run is then performed and 
the decay of the frozen-in strain, y(t) observed as a 
function of time. Since 7(0 is observed it may be 
differentiated to yield ~(t). According to the Bucci 
equation the ratio y(t)/~(t), a quantity with the dimensions 
of time, is a relaxation time typical of the relaxing system. 
We denote it rB, 

~,(tt 
"r,,- ?(t ). (2) 

From equation (2), zB is known as a function of time t in 
the experiment and is known therefore as a function T 
from equation (1): ~,(t) is negative and should be written 
I~(t)l: we follow the conventional shorthand as in equation 
(2). 

In a dielectric TS experiment with temperature window, 
an electric field is applied to the specimen at T, for a time 
t,: the temperature is then dropped by AT to T a and the 
field removed for a time t d. The specimen is then quenched 
to T o and the polarization consequently frozen-in. During 
the following heating run (equation (1)) the discharge 
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Figure I Description of the thermal sampling experiment (tem- 
perature window variant). The specimen is stressed at T a for  te: 
the temperature is lowered to T d a n d  the stress removed for t d. 
The specimen is then quenched to T O . Experimental t imet takes  
its zero at this point and the specimen is heated linearly, equation (1): 
during the heating 3' and hence 3 ~ are measured 

current j(t) is measured with an electrometer and the 
Bucci equation ~ is, 

co 

zB= j j(u) du/j(t). 
t 

The phenomenological theory for the dielectric and linear 
viscoelastic experiments are, of course, identical. 

The Bucci relaxation time, zs, we shall take to be an 
operational quantity obtained from experiment or from 
model calculation using the Bucci equation (equation (2)). 
Previous workers have accepted the validity of z~ as a 
characteristic relaxation time of the relaxing system and 
have determined the Arrhenius constants, AH and z~ 
from a plot of logzB against T -1. Arrhenius plots 
obtained in this way have not shown parallel lines as 
would be the case if AH was constant. Rather they have 
shown straight lines fanning out from a point. This result 
has been interpreted as favouring the compensation rule, 
according to which the t ~h relaxation time, ~, of the 
distribution of relaxation times depends on temperature 
according to 3, 

A H i [ I  1 1 z, = L exp ~ -  -~- - ~ . (3) 

The values of AH i differ systematically for each z~ but T~ is 
the same. Equation (3) is referred to as the compensation 
rule and T~ the compensation temperature; at T = T~ all 
relaxation times take the same value L, so that at T~ the 
specimen conforms to the Debye equations, with a single 
relaxation time. It is reported that T~ is close to the glass 
transition temperature, To: this highly significant 

observation is based on the applicability of the Bucci 
equation, which was used both in the mechanical 3 and in 
the dielectric 4 experiments. 

The compensation rule has been found in other 
systems, notably at the Zener relaxation in the alloy Ag-24 
atomic ~ Zn a. The possibility of a compensation 
temperature, at which the solid conforms to the Debye 
equations has been discussed by Macdonald 9 and by 
Nowick and Berry 1°. The possibility of a proportionality 
between AH and the entropy of activation AS also follows 
from the theories of Wert and Zener 11 and Eby 12. The 
proposal therefore that the compensation rule applies to 
polymeric mechanical and dielectric relaxation, although 
certainly radical, is not entirely unexpected. Nevertheless, 
there is a weak point in the TS evidence, which is the lack 
of a theory relating the Bucci relaxation time, as 
determined operationally, with the distribution of 
relaxation times governing the relaxation process. 

The purpose of the work described here was to examine 
the physical content of the Bucci equation. This is done 
both by model calculation and by experiment. The stress- 
temperature-time programme adopted for the calculation 
and for the experiment is shown in Figure 2. The stress is 
applied at T, for t,  and the specimen maintained at that 
same temperature for an additional time t~ under zero 
stress before quenching. This much reduces the problem 
of calculation when compared to the temperature window 
experiment, and has the same physical effect. The 
temperature window experiment has been analysed 
theoretically by Zielinski and Kryszewski ~ 3. Their model 
is the same as ours but the object of their calculation is 
different. The purpose of the work described here is to 
relate the operationally defined Bucci relaxation time to a 
relaxation time of the relaxing system. The Bucci plot, 
log z~ against T-  ~ is then corrected. The way this is done 
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Figure 2 Description of thermal sampling experiment (isothermal 
loading and unloading variant). The position of the zero in the 
experimental time t is indicated 
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Figure 3 Voigt model: the loading pattern t o = 1.2 ks, t d = 0.18 ks 
leaves strain in the packet of elements at ~- ~ 1 ks (see Figure 4). 
The Hookean component (Ju) and the long and short relaxation 
time components are unstressed 

4. In passing we note that the potential of the TS technique 
is illustrated in Figure 4. The loading pattern has placed 
within the specimen a strain which is essentially confined 
to relaxation times in a narrow band between 102 and 
10%. This strain is to be frozen-in by quenching: the 
kinetics of its release are to be observed. The problem is, of 
course, the detailed analysis of the strain release. The 
method of correcting from a box-distribution (equal J) to 
a ramp-distribution is described in the Discussion section. 

is described in the following section. The analysis is for a 
viscoelastic experiment but the results are applicable to 
any relaxation phenomenon such as thermoluminescence 
or dielectric relaxation described by analogous linear 
equations. 

MODEL CALCULATION 

Consider a Voigt model, Figure 3, with elements of equal 
strength J distributed three per decade from T = - vc to 
+ so. This closely spaced line spectrum replicates the 
continuous spectrum of relaxation time typical of 
polymers: we do not suggest that the real spectrum 
consists of isolated lines. The same calculation can be 
performed for a continuous spectrum but with more 
difficulty, a loss of physical insight and precisely the same 
result. There is also a loss of flexibility if the continuous 
spectrum is adopted, which becomes serious when the 
calculation is made with a wedge-distribution (see 
Discussion section). The conclusions of the model are not 
changed by increasing the density of elements above three 
per decade. It may be helpful to the reader to remark at 
once, that the loading pattern activates in the TS 
experiment only those relaxation elements with z in the 
region of 1 ks. Thus the mathematically convenient 
assumption of an infinitely wide box-distribution is 
physically reasonable, since the parts of the distribution 
far removed from 1 ks play no part in the analysis. 

We confine the theoretical calculation to the analysis of 
a particular experiment which was performed, and is 
described in the Experimental section: in this experiment 
the stress cr is applied for t o = 1200s and then removed for 
t d = 180s. It is a trivial problem to repeat the calculation 
for other loading and unloading patterns. Consider the i th 
element precisely at the time in which the specimen is to be 
quenched, Figure 2. The strain in this element is, by the 
Boltzmann superposition principle, 

Yi = aJ  [1 - e x p -  (to + ta)/zi] - a J  [1 - e x p -  (t a/zi) ] (4) 

which for the values of t o = 1200s and t d = 180s yields, 

Zi = 6J =y i  exp-(180/zi)[1--exp-(12OO/zi) ] (5) 

The fraction Z i is the ratio of the strain remaining in the i 'h 
element at the instant of quench to the maximum possible 
strain within that element, which is crJ. 

The relaxation times in the model are equally 
distributed three per decade; so that, for instance, between 
ls and 10s elements occur at 1.0s, 2.154s, 4.6415s and 10s. 
For this line spectrum of infinite width the values of Zi 
calculated from equation (5) which are sensibly finite, lie at 
times between 21.54s and 105s and are recorded in Figure 

Iso thermal  strain release at T~ 

Consider first the strain release subsequent to time t d if 
the specimen is not quenched but maintained at T~. In the 
ith element the strain at time t is, 

h(t) 
aJ  - Zi  e x p -  (t/'z), (6) 

in which we take here (and in the remainder of the paper) 
the zero in t at time t a after the stress is released, as 
indicated in Figure 2. The total strain at time t, 7(t), is 

~(t) 
a J  - Z z i  e x p -  (t/h). (7) 

Hence the ratio of the strain at time t to the strain at t =0, 
~(0), is, 

7(0 _ EZi  e x p -  (t/zi) 

7(0) EZi 
(8) 

This quantity is plotted for the model in Figure 5. 
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Figure 4 At the end of the loading-unloading programme (t o = 
1 200 s, t d = 180 s) the fractional strains Z i (equation (6)) that are 
sensibly finite depend on vias shown 
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Figure5 Dependenceat To of T(t) /3,(O) on log t for the model 
after the imposed loading (t o = 1200 s) and unloading pattern 
(t d = 180 s), Also plotted is 3 ,1 (t)[3,i(o) for  the two dominant re- 
laxation times (see Figure 4) at r = 464.1 s and r = 1000 s. Zero 
of  experimental t ime t is indicated in Figure 2 
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Figure 6 Isothermal dependence of the Bucci relaxation time r B 
at Teen  log t (scales to the left and below). Also shown is the 
value of Z i for the dominant relaxation times (scales to the right 
and above) 

is naturally independent of t. The calculated z B of the 
model equals the relaxation time of the two dominant 
elements, Figure 6, at t =  30s (464.1s element) and at t =  
459s (1000s element). So whilst the observed z B passes 
through the range of the dominant relaxation times, it 
cannot ever be a precise measure of them without 
correction. 

One obvious way of making a correction is to examine 
the plot of ~8(t) against 7(t)/~(0), which is shown in Figure 
7. The calculated z8 varies from 418s at 7(0/7(0)= 1.0 to 
2880s at 7(t)/y(O) = 0.187. Suppose we arbitrarily define the 
'effective relaxation time' of the model (under the given 
loading pattern) to be the value of zB at y(t)/7(0)=0.5. 
Other definitions are possible and lead to an equivalent 
result. At y(t)/y(0) = 0.5 the effective relaxation time is zn{ = 
1040s, Figure 7. Let the correction factor for the Bucci 
relaxation time determined at t, zs(t), be ct(t), 

I000 

0 

2 0 0 C  
The function given in equation (8) and plotted in Figure 

5 is a sum of exponentials each weighted by an 
appropriate Z v The dominant values of Z~ are for the two 
relaxation times 464.1s and 1000s (see Figure 4). The 
functions exp-(t/464.1) and exp-(t/1000) are also 
plotted in Figure 5 and represent the decay of the strain in 
the two dominant viscoelastic elements. The function, 
equation (8), for the model has the general appearance of 
an exponential decay but is in fact broader. 

Application of the Bucci equation (equation (2)) to the 
model can be made easily since by differentiating equation 
(8) we have from equation (2), 

7(0 E Z  i e x p -  (t/zi) 
z s ( t )  - - (9)  

"~(t) YZi(1/Ti) exp-(t/Ti) 

Values of zs(t ) computed from equation (9) are plotted in 
Figure 6 against log t. It will be seen that rB(t ) increases 
monatonically from 435s at t = 10s to 2880s at t =2300s. 
Now for a particular element, the i th, the ratio of the 
instantaneous strain in the elements to the instantaneous 
strain rate, 

Z i exp - (t/~) 
Zi(1/zi) exp - (t/zi) = % (10) 

0t(t) is plotted against log 7(0/7(0) in Figure 7. Now 
suppose only a fragment of the relaxation curve is 
observed so that at a specific time t~ we know y(tt) and 
~(tl): it then follows that 

. . ~(tt)  (12) 

The correction factor ~(tl) is known from y(tt)/y(O ) (Figure 
7) so that the effective relaxation time z~ is, 

zsl = e(tl)zB(t 1)" (13) 
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Figure 7 Isothermal dependence of  the Bucci relaxation time 
TB(t) at T o on the value of  7(t)/3,(0). Also shown (scale to the 
right) is the dependence of the correction factor, a(t) on ~/(t)/3,(O), 
(see equation (11 )) 
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Figure 8 I l lustration of  equation (19) showing isothermal depen- 
dence of  ~f(t)b/(O) on log t f o r  the loading pattern t o = 1200 s, 
t d = 1 8 0 s a t T  o , zero i n t t a k e n f r o m t h i s p o i n t .  Experiment 1, 
recovery at To: experiment 2, recovery after an instantaneous 
T-jump at t = 0 f rom T O to temperature T such that log a T = 2 

Hence, 

7r(art) TrY(t) 
- -  = - -  ( 1 9 )  

7(0) y(o) 

The two relaxation curves are therefore identical when 
plotted against log t, except that they are separated along 
the log t axis by log at, as indicated in Figure 8. 

Now from these two recovery curves we can calculate 
from the Bucci equation values of%: at T o and time t from 
equation (9), 

fro(t) = E Z  i exp - [t/zi(T~) ] (20) 
EZi[1/zi( To) ] e x p -  [t/zi( T~) ]" 

At T and time aTt , 

Thus if at any temperature we know 7(0 and ~(t), for a 
specific loading and unloading pattern we can obtain the 
effective relaxation time. The value of this correction will 
become apparent when we consider the non-isothermal 
release of frozen-in strain. 

r~(aTt ) = Z Z  i e x p -  [art/arri(T¢) ] (21) 
Z Z  i[1/a~zi( T~)] exp - [art /arri( T~)] 

It follows therefore that, 

z~(ar t) = ar z~"(t): (22) 

Isothermal strain release at T 
Before considering the decay of strain induced by the 

temperature programme given by equation (1) (see Figure 
2), consider the relationship between the 7(0 curves for the 
model when (1) the specimen is left at T o to recover 
(equation (8) gives this recovery curve): and (2), at t - -0  a 
temperature jump is performed from T o to T and the 
specimen maintained at T. The loading histories are 
otherwise identical up to the point t --0 (stress on at T o for 
t o and off at T o for td). The T-jump, T o to T causes the i th 
relaxation time at T~, z~(T~) to change instantaneously to 
z i( T), 

zi( T ) :  ayzi( Ta): (14)  

and, for an Arrhenius system, 

AH [-1 
ar =exp ~ -  L ~ -  T~Jl (15) 

For the narrow packet of relaxation times activated by the 
loading programme we take ar to be effectively constant. 
Even for a distribution obeying the compensation law, we 
take the packet to be sufficiently narrow so that, within 
experimental error, the approximation of equal ar for the 
packet is reasonable. The data can be tested to determine 
the precision of this assumption. 

In the first experiment (isothermal strain release at To) 
the strain at a particular time t is, 

7r'(t) = a J E Z  i exp - [t/zi(To) ] (16) 

In the second experiment at temperature T and at time 
art, 

7r(art) = a J E Z  i exp - [art/arzi(T~)-I , (17) 

therefore 
7r(art) = 7r°(t). (18) 

Now these experiments have identical loading histories so 
that 7(0) is the same for each. 

equation (22) follows from equation (21) because a T is 
taken to be constant for the narrow packet of relaxation 
times activated by the stress history. It follows also, that, 

~ = arz~.  (23) 

Now suppose we know at temperature T, values of ~(t) 
(see equation (14)): this quantity will be known precisely 
from the imposed loading and unloading pattern. 
Dividing equation (23) by equation (22), 

1; 

z~(awt ) r~(t) (24) 

The quantity on the right-hand side, is by definition a(t), 
equation (11). It follows therefore that if the parameter a(t) 
is known at T, for values of 7(t)/7(0), from 1 down to 0, then 
these same values of~ hold at any arbitrary temperature T 
for the same values of 7(0/7(0). For example, if at T o at 
7(0/7(0)=0.8, ~=1.88 (Figure 7) then at an arbitrary 
temperature T (for the same loading pattern) it follows 
that when 7(0/7(0) = 0.8, • also equals 1.88: ~ is determined 
uniquely at any temperature by the value of fractional 
strain remaining, 7(0/7(0). This fact, although not 
particularly of use in isothermal recovery, permits a 
valuable correction of the raw zn r data in the TS 
experiment, as we show next theoretically and by 
experiment. 

Non-isothermal release of  strain 
Consider the specimen to have followed the stress- 

temperature programme of Figure 2 (t o = 1200s, t d = 180s) 
and that it is on the heating run at temperature T given by 
equation (1), and that the time is t. Both 7(0 and ~(t) are 
measured and hence although the specimen is only 
instantaneously at T we may still compute, 

C ( t )  = 7r(t)  (25) 
~qt )  

We require, however, the value of the effective relaxation 
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Figure 9 Bucci relaxation times plotted log rBT(t) against T - I  
(squares) for heating rates 2°C/minute and 4°C/minute. Also 
shown is the effective relaxation time (computed from r l ( t )  using 
a box-distribution) plotted log r;1/2 against T -1 (circles'~ 

time at T, z< This is easily found, since we know the value B)" 
at (T, t) of yr(t)/7(O): hence we know from the calculated 
curve, (Figure 7) the appropriate value of ct: hence the 
value of z~ follows, 

z~ = azsr(t) (26) 

Thus for all values of T at which y(t) and ~(t) are 
determined we obtain the effective relaxation time at that 
value of T. From equation (23) it follows that, 

dlnz~ dinar 
(27) 

dO/T) dO/T) 

which from equation (15) yields, 

AH = 2.301R d log z ~  (28) 
d(1/T) " 

An experimental test of this method of correcting raw data 
in thermal sampling experiments is given in the following 
section. 

EXPERIMENTAL 

The specimen was a thin blade of isotactic polypropylene 
(Propathene PXC 8830) received from ICI. Its density at 
20°C was 0.905 g ml-  a. Before machining the polymer was 
annealed at 130°C and slowly cooled. It was mounted in a 
torsional creep machine 14 and surrounded by a cavity 
through which nitrogen gas was passed at the required 
temperature. The thermostatically controlled nitrogen 
gas was generated by a method based on that of 
Schwippert and van der Waal a 3. The temperature of the 
gas was controlled with a programmable three term 
controller. 

The purpose of the experiment was to check the 
theoretical correction procedure outlined in the Model 
Calculation section and not, in this insthnce, to examine 
the compensation rule. We elected to study at 
temperatures in the fl-region, just below T 0. The specimen 
was cooled from room temperature to -20°C (at 
8°/minute) and maintained at that temperature under 

G. McCrum 

zero stress for 20 minutes. The specimen was then stressed 
for 20 minutes (to). The stress was then removed for 3 
minutes (ta) and the specimen at once quenched to - 50°C 
(To). The time dependence of the strain was observed as 
the specimen was heated from - 50 ° to + 20°C at a rate of 
2°/minute. As the torsional strain in the specimen 
decreased the suspension of the torsional creep machine 
rotated back towards its zero position. This rotation was 
amplified by an optical lever and recorded on a 
Graphispot. It was observed that a very small 
temperature induced rotation of the specimen occurred 
(probably due to thermoelastic stresses) in the absence of 
strain recovery. In order to allow for this small rotation, 
the specimen (under zero stress throughout) was put 
through the identical temperature programme and the 
rotations measured with the Graphispot. This permitted 
small experimental zero corrections to be made to 
recovery strains. A second pair of experiments was then 
performed identical in every way except that the heating 
rate from T O = - 5 0  ° was C/minute. 

Values of zBr(t) were obtained and are shown in Figure 9 
plotted log zr(t) against T-  1. It will be seen that the data 
conform more or less to a straight line at low temperatures 
but curve off into a flat region at high temperatures. The 
point at which the data curve off differs between the two 
heating rates. Values of z~r~ were calculated as described in 
the Model Calculation section and are plotted also in 
Figure 9. The essential point about the correction is that 
the data is transformed from a curve on the T-  1 plot to a 
straight line. 

DISCUSSION 

We regard the analysis of the Model Calculation section 
as being so entirely rational, and its success in converting 
the curved log z B versus T -  1 plot into standard Arrhenius 
form so striking, that a comparable procedure should be 
adopted in future for all Bucci relaxation times. 

Further evidence in favour of the correction is the 
difference in the position of the bend in the plot of log z r 
versus T -  1 with heating rate. The value ofzn obtained at T 
should be independent of heating rate, a point made 
originally by Bucci, Fieschi and Guidi 2. That the bend 
depends on heating rate is clear evidence that the raw data 
(C) is not a true measure of a physical relaxation time of 
the system. 

The procedure outlined in the Model Calculation 
section can be improved by taking into account the fact 
that the relaxation times are not of equal strength. The 
first advance in precision is to assume that the distribution 
is wedge-shaped and to obtain the slope of the wedge 
using the method advanced by Ferry 16. This is done by 
differentiating a creep curve obtained at To: a double- 
logarithmic plot of creep rate versus time yields the slope 
of the wedge. Then from the Wedge slope values of zs(t) can 
be calculated and from these a new set of g(t) appropriate 
to the wedge slope. This was done and the wedge c~(t) 
correction applied to the raw data: the results are shown 
in Figure 10. The values of AH obtained are given in 
Table 1. 

It will be seen from Table 1 that the agreement between 
the values of AH for the two rates of heating is remarkable. 
This precision is an intrinsic virtue of the TS technique. 
The discrepancy between the values calculated from the 
raw data at the two heating rates is probably due to the 
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difficulty of selecting the cut-off point. A more elaborate 
model with ten elements per decade was also used for the 
correction and yielded values of AH for the 2°/rain and 
4°/min experiments as follows; 35.4 and 35.3 kcal tool-  1 
for the box distribution; 37.7 and 37.6 kcal mol-  1 for the 
ramp distribution. We take these values to be more 
reliable than the values from the model with three 
elements per decade. 

Whether or not the extra work in using the wedge is 
necessary depends on the precision required. The slope of 
the ramp and the direction of slope are, in general, 
temperature dependent. It follows that the discrepancy 
between the box and the wedge values of AH will vary in 
magnitude and also in sign with the stressing temperature 
T o . For most purposes the wedge should be used. The 
correction procedures can be performed quickly by 
computer. 

Another method (if neither box nor wedge is considered 
adequate) is to determine ~ in a separate isothermal 
experiment at T~. The specimen is put through its normal 
loading and unloading cycle and strain recovery observed 
at T o. Values of ~B at T o are then calculated at values of 
7(t)/7(0) in the range of interest. 

The bend in the log r~(t) versus T - ~  plot for the raw 
data shown in Figure 9 has been described by Zielinski 
and Kryszewski13. At low temperatures the data conform 
more or less to a straight line (see Figure 9). This coincides 
with the region in which 7(t)/7(0) is above 0.5, in which 
region the raw z~ data provides a reasonable but not 
precise measure of the dominant relaxation times. It will 
be noted from Figure 6 that in this region rR does not 
depend too heavily on t and it is this fact that causes the 
log rBr(t) versus T -  ~ plot to be more or less linear at low 
temperatures. When the value of 7(t)/7(0)moves below 0.5, 
TB commences to vary rapidly with log t and it is this 
which causes noticeable bend in the data shown in Figure 
9. Values of AH obtained by differentiating the low 
temperature portion of the raw log T B versus T -  ~ plot are 
given in Table 1. They are of order 17~o lower than the 
values from the wedge correction. The literature values of 
AH for various polymers obtained by TS using both 
mechanical 3 and dielectric 4 techniques use low 
temperature data only (~), as indicated in Figures  9 and 
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Table  I Values of AH in kcal mol - I  obtained from Arrhenius 
plots: stressing temperature T o = -20°C.  We take the best values 
to be those in the third column: the percentage deviations of the 
second and first columns from the third are indicated. For the raw, 
uncorrected data, the log r B versus T -1  plot is curved: the value 
of AH shown is obtained from the low temperature portion (see 
Figures 9 and 10). Model used for correcting the raw data has 
three elements per decade 

Corrected data: "rBl/2 

Heating Raw data: Box Wedge 
rate r B distribution distribution 

2°/rain 29.3 (--20%) 35.0 (--5%) 36.7 (0%) 
4°/rain 32.6 (--11%) 35.0 (--5%) 36.7 (0%) 

10. It is certain that the interpretation of curved log r~ 
plots versus T -  1 in polystyrene17 and in polypropylene ~s 
in terms of the Vogel equation is incorrect: the 
appropriate course is to re-analyse this data using the 
method proposed in this paper. 

We are at present using this corrected thermal sampling 
technique to study the variation of AH with relaxation 
time in the /3-region in order to compare with the 
observations made by double T-jump on the ~-region 6. 
The results will be reported elsewhere. 

The extent of the error induced by the assumption of a 
constant er for the activated packet we take up elsewhere. 
It obviously depends on the peak width, which is under 
the control of the experimenter, and on the rate of 
variation of AH with relaxation time. 

The values of t, (1200s) and t d (180s) adopted were quite 
arbitrary and were selected to suit experimental 
conditions. It is possible to probe other parts of the 
spectrum by using other values of to and re, whilst 
maintaining the same ratio of t j t e .  There is a limit to the 
value of t which is convenient: it would probably be 
possible to go up x 100 in both t o and t a and down in both 
by x 10. A more likely experimental programme with the 
same objective involves keeping t o and t~ constant but 
varying T~. This is the experiment, in the temperature 
window variant, which has been performed by Lacabanne 
et al. 3 and by Zielinski, Swiderski and Kryszewski 4 using 
the uncorrected Bucci equation. In order to establish the 
validity of the compensation rule and the placing of T~ 
close to T o , these experiments should also be re-analysed 
using a correction of the form proposed in this paper. 

CONCLUSION 

The method proposed for correcting Bucci relaxation 
times is entirely rational and is supported by experiment. 
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